

DCO2520

DATA STRUCTURES AND ALGORITHMS

(CHAPTER 2)

BY

PATRICK WONG

�Application of linked list to data structures:

	

stack(LIFO)

queue(FIFO)

�STACK

Abstract Data Type (ADT).

Two possible operations on the data structure, namely push and pop.

Can be implemented by array or linked list in C.

Operations observe last-in-first-out order.

�"C" implementation :

#define STACKSIZE 200

struct stack{

	int top;

	int items[STACKSIZE];

}

�Can you answer the following questions ?

1. Why is 'top' included in the structure ?

2. How many data item does the stack has?

3. List the first and last data item on the stack ?

4. Assuming top equals 4, list the value of top after executing the following sequence of operations .

	push();

	pop();

If the value of st.top is 5, how many elements on the stack. (Assuming the declaration of st is valid.)

List the first three elements in C on the stack.

putchar (pop(st));

putchar(pop(st));

putchar(pop(st));

�Initialization Value :

The initialization value is set by -1 to indicate empty stack ,

	st.top = -1;

Checking stack value using pointer :

#define TRUE 1

struct stack *pst

{���..

	if(pst->top == -1)

		return(TRUE)

else...

�Stack overflow

The condition for stack overflow is

pst->top == STACKSIZE-1;

�Pushing an item(Placing an item on the stack)

pst->items[++(pst->top)]=x

where x is the value to be pushed and pst is a pointer to the stack.

The routine call is

push(pst,x)

The routine for pop():

pop(struct stack *ps)

{

return(ps->items[ps->top--]);

}

What if the stack is empty ?

�Can you define the function empty() to test whether a given stack is empty ?

�Can we have a stack of other data types ?

Real number ?

Character ?

Mixed ?

�#define STACKSIZE 100

#define INTGR 1

#define FLT 2

#define STRING 3

struct stackelement{

	int etype;

	union {

		int ival;

		float fval;

		char *pval;

	} ;

};

struct stack{

	int top;

	struct stackelement items[STACKTOP];

};

struct stack s;

�We could print the top element of the stack as follows:

struct stackelement se;

se= s.items[s.top];

switch (se.etype) {

	case INTGR : printf("%d\n", se.ival);

	case FLT : printf("%d\n", se.fval);

	case STRING: printf("%d\n", se.pval);

}

� RECURSION

What will be returned for the following function if the inputs are 4 , 0.

int abc(int n)

{

 int x, prod=1;

 for (x=n;x>0;x� �)

 prod *= x;

 return (prod);

}�

int fact(int n)

{

 int x, y;

 if (n==0)

 return(1);

 x = n �1;

 y = fact(x);

 return (n*y);}

�PRO'S AND CON'S OF USING

RECURSION :

Some programmers feel that the use of recursion is inefficient.

The use of recursive code is easy to write, understand and maintain.

Not all HLL support recursive routines.

�More on Queue

A queue by definition is an ordered collection of items.

* Items can be added.(enqueue)

* Items can be removed.(dequeue)

* enqueue is to the tail while dequeue is from the head.(LIFO)

�What would the queue look like after the following sequence of operations.

enqueue(q,'A');

enqueue(q,'B');

enqueue(q,'C');

enqueue(q,'D');

�To get an item :

x = dequeue(q);

What is in x ?

!!!

Do you realize that we have finished discussing the operations of Queue even without looking at any programming language?

ADT

� Queue Representation(Static)

#define queuesize 100

struct queue {

 int items[queuesize]

 int front, rear;

 } q;

Initialization Value for front & rear

q.rear = �1;

q.front = 0;

�What should be the values of rear & front for the following conditions of the queue ?

 * queue is empty.

 * queue is occupied but not full.

 * queue overflow.

�What problem do you see with the above static representation and implementation of queue ?

! View the queue as circular.

 Any problem ?

�Alternate static implementation :

* q.rear is the array index of the last element of the queue.

* q.front is the index immediately preceding the first element of the queue.

* q.front==q.rear implies the queue is empty.

* set both index pointers to the last position of the array.

�#define MAXQUEUE 100

struct queue{

 int items[MAXQUEUE];

 int front, rear;

};

struct queue q;

q.front=q.rear=MAXQUEUE�1;

/* To code the empty function */

int empty(struct queue *pq)

{

return((pq�>front==pq�>rear) ? TRUE:FALSE);

}

�How do you determine queue overflow?

�/* To remove an item */

int dequeue(struct queue * pq)

{

 if (empty(pq)) {

 printf("queue underflow");

 exit;

 if (pq�>front==MAXQUEUE�1)

 pq�>front = 0;

 else

 (pq�>front)++;

 return (pq�>items[pq�>front]);

}

/* To insert an item */

void enqueue(struct queue *pq, int x){

/*make room for new element*/

if(pq�>rear==MAXQUEUE�1)

 pq�>rear=0;

else

 (pq�>rear)++;

/*check for overflow*/

if (pq�>rear==pq�>front){

 printf("queue overflow");

 exit;}

pq�>items[pq�>rear]=x;

return;}

�Queue implemented by linked list is straight forward.

Priority Queue

* Ascending Priority Queue

* Descending Priority Queue

		DCO2520 DATA STRUCTURES & ALGORITHMS	

			

2.� PAGE �2�

			

			

